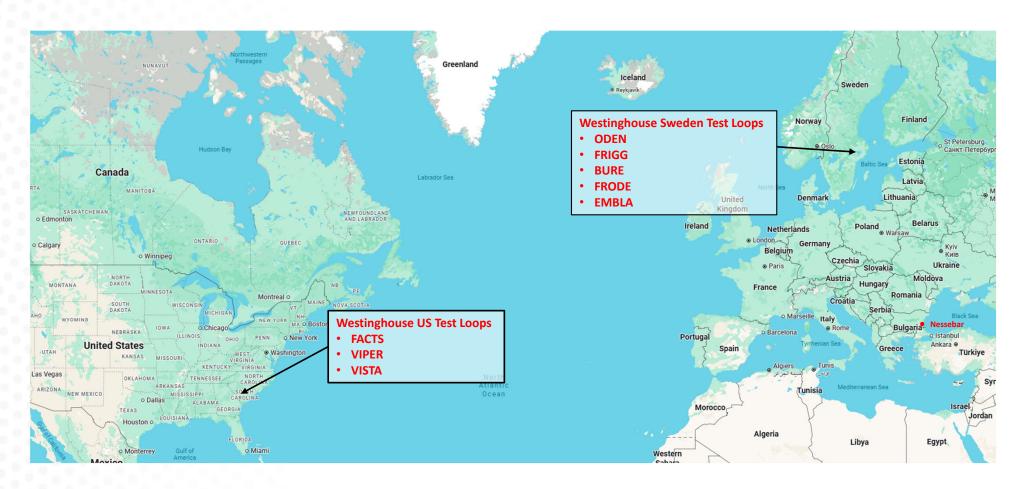
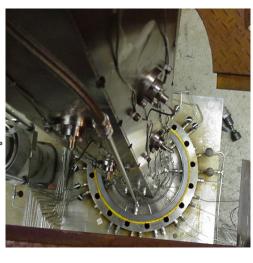

Outline

- Introduction
- Westinghouse US Test Loops
 - FACTS
 - VIPER
 - VISTA
- Westinghouse Sweden Test Loops
 - ODEN
 - FRIGG
 - BURE
 - FRODE
 - EMBLA


Introduction

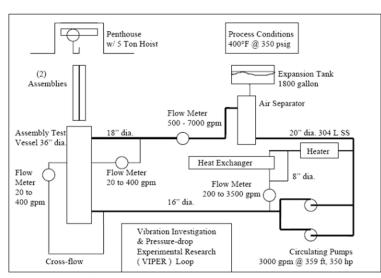
- Light Water Reactors (LWRs) rely on complex core thermal-hydraulic behavior to ensure safe and efficient operation.
- As advanced fuel designs are developed to support more demanding reactor operation, advanced modeling and rigorous testing are essential to optimize performance, address emerging challenges and meet regulatory requirements.
- This presentation highlights Westinghouse current Thermal-Hydraulic testing capabilities

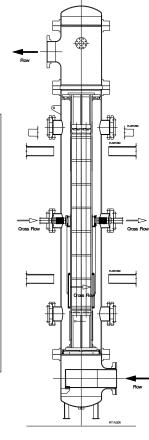




FACTS VVER/PWR Loop

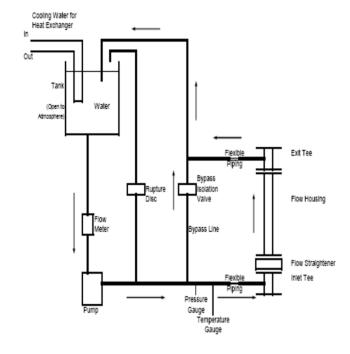
- Primary objectives
 - Pressure drop
 - Vibration
 - Debris filter efficiency
- Operating boundary conditions
 - Pressures up to 15.5 bar
 - Inlet temperature up to 121°C
 - Flow range from 0 to 150 kg/s
- Full scale single fuel assembly
- Built to be transportable
- Standard loop for defining Westinghouse PWR fuel loss coefficients historically




Built in the 1980's

VIPER VVER/PWR Loop

- Primary objectives
 - Pressure drop
 - Vibration
 - Grid-to-rod fretting
- Operating boundary conditions
 - Pressures up to 25 bar
 - Inlet temperature up to 203°C
 - Axial Flow range from 0 to 400 kg/s
 - Cross Flow range from 0 to 16.5 kg/s
- Full scale, single or dual assemblies
 - · May contain rods with non-enriched uranium
- Standard loop for defining Westinghouse PWR and VVER fuel grid-to-rod fretting performance



Built in the late 1990's

VISTA VVER/PWR Loop

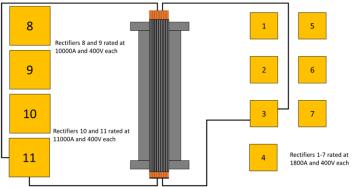
- Primary objectives
 - Pressure drop
 - Vibration
 - Flow Velocity profile measurement capability (Laser Doppler Anemometry)
- Operating boundary conditions
 - Pressures up to 5.5 bar
 - Inlet temperature up to 27°C
 - Flow range from 0 to 25 kg/s
- 1.5 m axial scale, 5x5 radial rod configuration
- Inexpensive scoping testing prior to FACTS or VIPER testing

Built in the late 1990's

ODEN VVER/PWR Loop

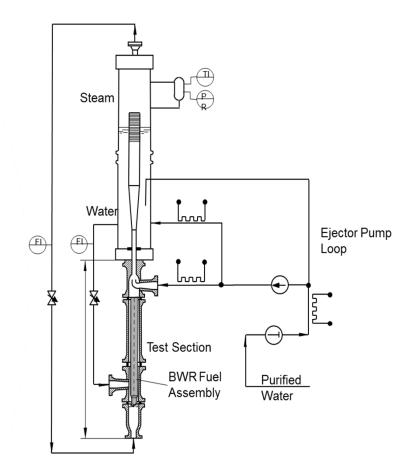
- Primary objectives
 - · Critical heat flux
 - Mixing
 - Pressure drop
- Operating boundary conditions
 - Power up to 12 MW
 - Pressures up to 200 bar
 - Inlet temperature up to 366°C
 - Flow range from 0.7 to 22 kg/s
- Full axial scale with 5x5 or 6x6 or 19 rod hex radial configuration
- Directly electrically heated rods monitored with ~8 thermocouples each

Built in early 2000, first commercial test in 2011



FRIGG BWR Loop

- Primary objectives
 - Critical heat flux
 - · Static and transient (power and flow)
 - Pressure drop
 - Hydraulic stability
 - · Local void and flow velocity
- Operating boundary conditions
 - Power up to 15 MW
 - Pressures up to 100 bar
 - Inlet temperature up to 311°C
 - Flow range from 2 to 25 kg/s
- Full axial and radial scale up to 11x11 radial rod configuration
- Indirectly electrically heated rods monitored with ~8 thermocouples each
- Flexible radial power configuration during operation

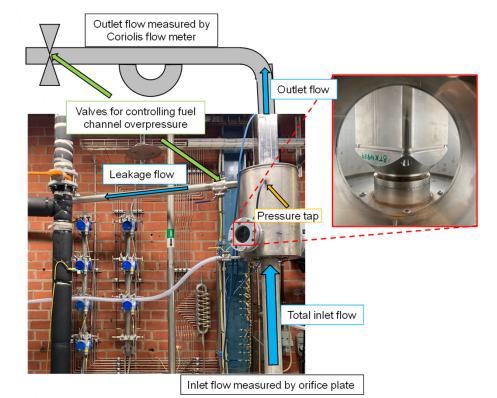

Total combined power output of ~15 MW

Built in the 1960's Latest upgrade ~2020

Westinghouse Non-Proprietary Class 3 | © Westinghouse Electric Sweden AB. All Rights Reserved.

BURE BWR Loop

- Primary objectives
 - Vibration
 - Fretting
- Operating boundary conditions
 - Pressures up to 85 bar
 - Inlet temperature up to 300°C
 - Flow rate up to 25 kg/s
- Can be run in single or two-phase mode (steam injection)
- 1:1 BWR fuel mockup containing non-enriched uranium rods
- Typical test time ~700 hrs



Built in the 1970's Will be largely renovated in ~2026

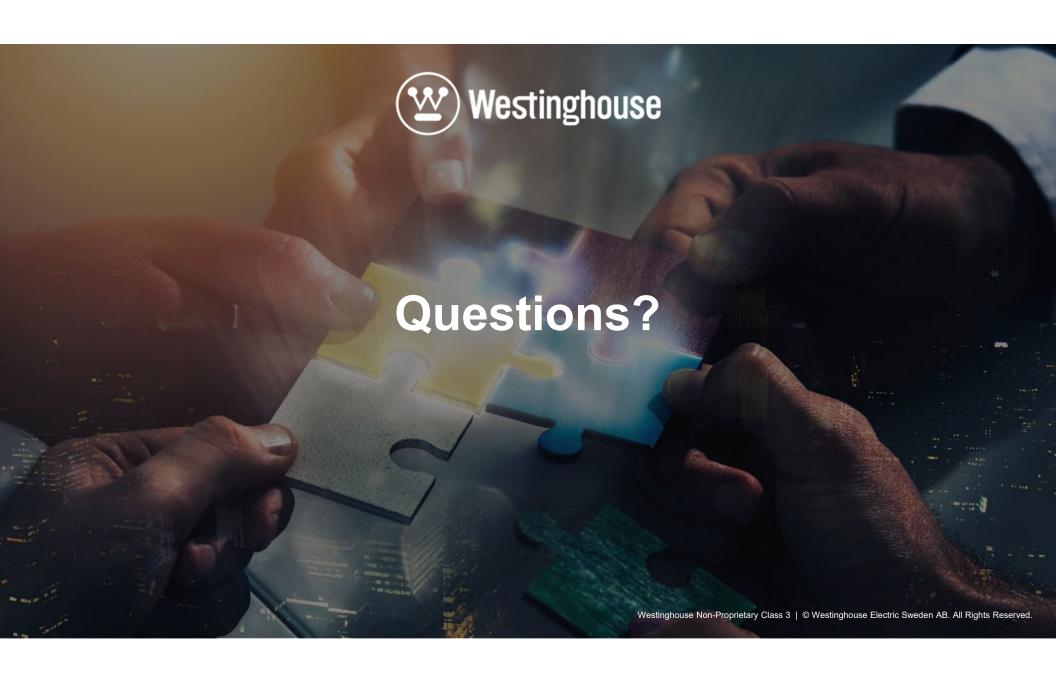
FRODE BWR Loop

- Primary objectives
 - Pressure Drop
 - Debris filter efficiency
 - Local flow velocity
 - Hydraulic lift force
 - Clogging
 - · Leakage flow
- · Operating boundary conditions
 - · Open loop, atmospheric pressure
 - Inlet temperature up to 85°C
 - Flow rate up to 30 kg/s
- Full radial scale BWR fuel, shortened axial scale
- Flexible and versatile

Built in the 1960's Continuously upgraded and modified

EMBLA VVER/PWR/BWR Loop

- Primary objectives
 - Single phase detailed axial pressure drop
- Operating boundary conditions
 - Pressures up to 18 bar
 - Inlet temperature up to 150°C
 - Flow rate up to 590 m³/h (~150 kg/s)
- Full scale fuel assemblies
- Special features
 - Built with large focus on accurate flow measurement
 - Dual flow measurements
 - · Primary, Coriolis flow meter
 - Uncertainty of 0.1% (1σ)
 - · Secondary, orifice plate
 - Uncertainty of 0.6% (1σ)
 - Long inlet straight
 - Inlet designed to have a fully developed flow at bundle inlet



Built 2022 VVER1000 and VVER440 tests performed

Summary

- Fuel development requires advanced modeling and rigorous testing.
- Westinghouse has the capability to investigate the Thermal-Hydraulic characteristics of our entire fuel fleet in-house.
- Fuel laboratories open for both internal and external testing.

